JPL

Integrated Modeling of Optical Systems Workshop January 19, 1998

IMOS Structural Modeling Dr. Robert Norton, JPL

Objectives

- Present structural analysis capabilities
- Illustrate usage for structural analysis

JPL

Objectives of IMOS Structural Capabilities

- Provide core linear FEM capability
 - Not intended to replace existing codes, but to integrate FEM capability with thermal, optical & controls in Matlab
- Provide a comfortable environment for the FEM user

Elastic Element Library

- Truss
- Beam
- Plate/membrane

Truss Element

- Provides axial stiffness only
- No bending capability
- Translation only of nodes (6 d.o.f. total)
- Used to provide engineering approximation for a long slender member where internal bending isn't important to global solution

Beam Element

- Uses standard beam theory to connect two nodes (12 d.o.f. total)
- Includes bending & transverse shear
- Exact representation of engineering beam theory
- Used when internal bending is important to global solution

Plate/Membrane Element

- Used in quadrilaterals & triangles
- Uses 5 d.o.f per node
- Similar to COSMIC NASTRAN elements
- Simplified input via uplate & splate
- General input via gplate
- Unlike truss & beam, is a continuum element, an approximation to theory of elasticity "reality"

Miscellaneous Components

- Rigid Elements & MPCs
- Lumped Mass
- Discrete Spring
- Mass Properties Analysis

Rigid Elements

- Use rbe2 for rigidly attaching a group of dependent nodes to a single independent node
- Use rbe3 for making one grid dependent upon weighted average of other independent nodes
- Use mpc for general solution makes a given degree of freedom equal to a linear combination of other d.o.f.s

Lumped Mass

- Use conm to add mass at a node
 - scalar adds translational mass
 - vector adds diagonal of a square matrix (mass & inertia)
 - square matrix adds general mass data (full 6 x 6 inertia matrix)

Discrete Spring

- Use celas to add a spring connecting two nodes
- The spring acts in both tension & compression (required for linear analysis)

Mass Properties Analysis

- Use cg_calc to calculate center of gravity of a model
- Use wtcg to calculate mass properties of a model

Material Library

- Currently used only for plate/membrane
- Usage of mat1, mat2, mat8

mat1

- Use mat1 to provide material properties for uniform, isotropic materials
- Appropriate for all element types
- Typically used for metals

$$\sigma = E \varepsilon - [T - T_0] \alpha$$

mat2

- Used for materials which are anisotropic in 2D, such as composites
- Typically used with composite face sheets

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \begin{bmatrix} G_{11} & G_{12} & G_{13} \\ G_{12} & G_{22} & G_{23} \\ G_{13} & G_{23} & G_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix} - (T - T_{0}) \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{12} \end{bmatrix}$$

$$\begin{cases} \tau_{xz} \\ \tau_{yz} \end{cases} = \begin{bmatrix} G_{11} & G_{12} \\ G_{12} & G_{22} \end{bmatrix} \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

mat8

- Used for orthotropic materials in 2D
- Typically used for sandwich plate cores

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \begin{bmatrix} \frac{E_{1}}{1 - \nu_{12}\nu_{21}} & \frac{\nu_{12}E_{2}}{1 - \nu_{12}\nu_{21}} & 0 \\ \frac{\nu_{12}E_{2}}{1 - \nu_{12}\nu_{21}} & \frac{E_{2}}{1 - \nu_{12}\nu_{21}} & 0 \\ 0 & 0 & G_{12} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix} + \begin{bmatrix} T - T_{0} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ 0 \end{bmatrix}$$

$$\begin{cases} \tau_{xz} \\ \tau_{yz} \end{cases} = \begin{bmatrix} G_{1z} & 0 \\ 0 & G_{2z} \end{bmatrix} \begin{bmatrix} \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

Solution Methods

- Static
- Modal
- Modal with model reduction
- Buckling
- Static or modal with pre-load effects
- Frequency response

Static Solution

- Used to compute structural deformations due to statically applied loads
- Loads are applied at nodes
- Some capability for thermally induced loads

Modal Solution

- Create the stiffness & mass matrices
- Use eig or eigfem to compute eigenvalues & eigenvectors

Modal with Model Reduction

- Use Guyan reduction to reduce size of stiffness & mass matrices
 - Required when mass matrix is singular
 - Works best with a few large important masses with high kinetic energy
- Use rbmodes to compute rigid body modes

Buckling

- Beam elements will change lateral stiffness based on axial load
- Axial loads can get high enough to cause buckling

JPL

IMOS

Static or modal with pre-load effects

- Axial tension/compression will change frequencies or response to static loads
- Effects are computed only for beam elements

Structural Capability Validation

- Used standard sources for code
- Sample problems and test suites
- IMOS is being used for "real world" problems
- Validated vs. test on MPI

Weaknesses

- Assumes knowledgeable user (does not restrict power user)
- Limited error checking, no hand-holding
- Incomplete forces/stress recovery
- Incomplete thermal deformation

JPL

Future Developments

- Extend force/stress recovery
- Improve thermal deformation capability
- Implement general plate (gplate)
- Introduce local coordinates
- Provide orientation of mat2 & mat8
- Provide limited substructuring
- NASTRAN converter, both ways